[1]Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
[2]Vienna J D, Collins E D, Emory D, et al. Closed fuel cycle waste treatment strategy, PNNL-24114[R]. United States: Pacific Northwest National Laboratory, 2015.
[3]Xu C, Wang J, Chen J. Solvent extraction of strontium and cesium: a review of recent progress[J]. Solvent Extr Ion Exch, 2012, 30(6): 623-650.
[4]游新锋,张振涛,马辉.无机锶吸附剂的制备及其应用[J].核化学与放射化学,2015,37(3):171-176.
[5]王建晨,陈靖.我国高放废液中铯分离研究进展[J].核化学与放射化学,2019,41(1):27-39.
[6]张晓霞,吴昊,韦悦周.多孔性硅基磷钼酸铵吸附剂对铯的固化性能[J].核化学与放射化学,2020,42(1):51-57.
[7]史策,熊世杰,沈兴海.基于离子液体萃取体系宏观超分子组装的锶分离[J].核化学与放射化学,2022,44(1):52-60.
[8]Zhang Z, Cheng M, Xiao X, et al. Machine-learning-guided identification of coordination polymer ligands for crystallizing separation of Cs/Sr[J]. ACS Appl Mater Interfaces, 2022, 14(29): 33076-33084.
[9]Lin T, Wang Y, Liu X, et al. A survey of transformers[J]. AI Open, 2022, 3: 111-132.
[10]Lei B, Kirk T Q, Bhattacharya A, et al. Bayesian optimization with adaptive surrogate models for automated experimental design[J]. NPJ Comput Mater, 2021, 7(1): 194.
[11]Burger B, Maffettone P M, Gusev V V, et al. A mobile robotic chemist[J]. Nature, 2020, 583(7815): 237-241.
[12]Groom C R, Bruno I J, Lightfoot M P. The Cambridge structural database[J]. Acta Crystallogr B, 2016, 72: 171-179.
[13]Werner J E, Swift J A. Organic solvates in the Cambridge structural database[J]. Crystengcomm, 2021, 23(7): 1555-1565.
[14]Weininger D. Smiles 3: depict graphical depiction of chemical structures[J]. J Chem Inf Comput, 1990, 30(3): 237-243.
[15]O’Boyle N M. Towards a universal SMILES representation: a standard method to generate canonical SMILES based on the InChI[J]. J Cheminformatics, 2012, 4: 22.
[16]Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]∥Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, United states: Curran Associates Inc, 2017, 36: 6000-6010.
[17]Gehring J, Auli M, Grangier D. Convolutional sequence to sequence learning[C]∥Proceedings of the 34th International Conference on Machine Learning. Sydney, Australia: JMLR Org, 2017, 70: 1243-1252.
[18]Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536.
[19]Greenhill S, Rana S, Gupta S, et al. Bayesian optimization for adaptive experimental design: a review[J]. IEEE Access, 2020, 8: 13937-13948.
[20]Shahriari B, Swersky K, Wang Z, et al. Taking the human out of the loop: a review of Bayesian optimization[J]. Proc IEEE Inst Electr Electron Eng, 2016, 104(1): 148-175.
[21]Rasmussen C E, Williams C K I. Gaussian processes for machine learning[M]. Cambridge, United States: MIT, 2006: 7-102.
[22]Zhan D, Xing H. Expected improvement for expensive optimization: a review[J]. J Glob Optim, 2020, 78(3): 507-544.
[23]Maaten L v d, Hinton G. Visualizing data using t-SNE[J]. J Mach Learn Res, 2008, 9: 2579-2605.
[24]Greenwood N N, Earnshaw A. Chemistry of the elements[M]. Second Edition. Oxford, United Kingdom: Oxford University, 1997: 68-138.
[25]LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[26]Pan S J, Yang Q. A survey on transfer learning[J]. IEEE Trans Knowl Data Eng, 2010, 22(10): 1345-1359.
[27]Kanezaki A, Kuga R, Sugano Y. Chapter 2-deep learning for multimodal data fusion[M]. London, United Kingdom: Academic, 2019: 9-39.
[28]Zhang J, Chen L, Dai X, et al. Distincive two-step intercalation of Sr2+ into a coordination polymer with record high 90Sr uptake capabilities[J]. Chem, 2019, 5(4): 977-994.
[29]Mu W, Chen B, Yang Y, et al. Preparation of crown ether pillared zirconium phosphonate for strontium removal[J]. J Phys Chem Solids, 2022, 163: 110604.
[30]Otu E O, Chiarizia R, Rickert P G, et al. The extraction of americium and strontium by P, P’-di(2-ethylhexyl)benzene-1, 2-diphosphonic acid[J]. Solvent Extr Ion Exch, 2002, 20(6): 607-632.
|